Nonlinear Dimensionality Reduction using Approximate Nearest Neighbors
نویسندگان
چکیده
Nonlinear dimensionality reduction methods often rely on the nearest-neighbors graph to extract low-dimensional embeddings that reliably capture the underlying structure of high-dimensional data. Research however has shown that computing nearest neighbors of a point from a highdimensional data set generally requires time proportional to the size of the data set itself, rendering the computation of the nearest-neighbors graph prohibitively expensive. This work significantly reduces the major computational bottleneck of many nonlinear dimensionality reduction methods by efficiently and accurately approximating the nearest-neighbors graph. The approximation relies on a distance-based projection of high-dimensional data onto low-dimensional Euclidean spaces. As indicated by experimental results, the advantage of the proposed approximation is that while it reliably maintains the accuracy of nonlinear dimensionality reduction methods, it significantly reduces the computational time.
منابع مشابه
High-Dimensional Similarity Search Using Data-Sensitive Space Partitioning
Nearest neighbor search has a wide variety of applications. Unfortunately, the majority of search methods do not scale well with dimensionality. Recent efforts have been focused on finding better approximate solutions that improve the locality of data using dimensionality reduction. However, it is possible to preserve the locality of data and find exact nearest neighbors in high dimensions with...
متن کاملArticulatory Feature Classification Using Nearest Neighbors
Recognizing aspects of articulation from audio recordings of speech is an important problem, either as an end in itself or as part of an articulatory approach to automatic speech recognition. In this paper we study the frame-level classification of a set of articulatory features (AFs) inspired by the vocal tract variables of articulatory phonology. We compare k nearest neighbor (k-NN) classifie...
متن کاملIterative Nearest Neighbors
Representing data as a linear combination of a set of selected known samples is of interest for various machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors (kNN) and its variants are still among the best-known and most often used techniques. Some popular richer representations are Sparse Representation (SR) based on solving an l1-regularized lea...
متن کاملLocal generalized quadratic distance metrics: application to the k-nearest neighbors classifier
Finding the set of nearest neighbors for a query point of interest appears in a variety of algorithms for machine learning and pattern recognition. Examples include k nearest neighbor classification, information retrieval, case-based reasoning, manifold learning, and nonlinear dimensionality reduction. In this work, we propose a new approach for determining a distance metric from the data for f...
متن کاملFeature extraction for nearest neighbor classification: Application to gender recognition
In this article, we perform an extended analysis of different face-processing techniques for gender recognition problems. Prior research works show that support vector machines (SVM) achieve the best classification results. We will show that a nearest neighbor classification approach can reach a similar performance or improve the SVM results, given an adequate selection of features of the input...
متن کامل